Optimal strong parity edge-coloring of complete graphs

نویسندگان

  • David P. Bunde
  • Kevin G. Milans
  • Douglas B. West
  • Hehui Wu
چکیده

A parity walk in an edge-coloring of a graph is a walk along which each color is used an even number of times. Let p(G) be the least number of colors in an edge-coloring of G having no parity path (a parity edge-coloring). Let p̂(G) be the least number of colors in an edge-coloring of G having no open parity walk (a strong parity edge-coloring). Always p̂(G) ≥ p(G) ≥ χ′(G). We prove that p̂(Kn) = 2dlg ne−1 for all n. The optimal strong parity edge-coloring of Kn is unique when n is a power of 2, and the optimal colorings are completely described for all n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Parity Edge-Coloring of Complete Graphs

A parity walk in an edge-coloring of a graph is a walk along which each color is used an even number of times. Let p(G) be the least number of colors in an edge-coloring of G having no parity path (a parity edge-coloring). Let p̂(G) be the least number of colors in an edge-coloring of G having no open parity walk (a strong parity edge-coloring). Always p̂(G) ≥ p(G) ≥ χ′(G). We prove that p̂(Kn) = ...

متن کامل

Parity and Strong Parity Edge-Coloring of Graphs

A parity walk in an edge-coloring of a graph is a walk traversing each color an even number of times. We introduce two parameters. Let p(G) be the least number of colors in a parity edge-coloring of G (a coloring having no parity path). Let b p(G) be the least number of colors in a strong parity edge-coloring of G (a coloring having no open parity walk). Note that b p(G) ≥ p(G) ≥ χ′(G). The val...

متن کامل

Edge-coloring Vertex-weightings of Graphs

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...

متن کامل

Strong edge-coloring for jellyfish graphs

A strong edge-coloring of a graph is a function that assigns to each edge a color such that two edges within distance two apart receive different colors. The strong chromatic index of a graph is the minimum number of colors used in a strong edge-coloring. This paper determines strong chromatic indices of cacti, which are graphs whose blocks are cycles or complete graphs of two vertices. The pro...

متن کامل

Facial Parity 9-Edge-Coloring of Outerplane Graphs

A facial parity edge coloring of a 2-edge-connected plane graph is such an edge coloring in which no two face-adjacent edges (consecutive edges of a facial walk of some face) receive the same color, in addition, for each face f and each color c, either no edge or an odd number of edges incident with f is colored with c. It is known that any 2-edgeconnected plane graph has a facial parity edge c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorica

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2008